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Abstract—Traditional full-reference (FR) image quality assess-
ment (IQA) metrics generally predict the quality of the distorted
image by measuring its deviation from a perfect quality image
called reference image. When the reference image is not fully
available, the reduced-reference (RR) and no-reference (NR)
IQA metrics may still be able to derive some characteristics
of the perfect quality images, and then measure the distorted
image’s deviation from these characteristics. In this paper,
contrary to the conventional IQA metrics, we utilize a new
“reference” called pseudo reference image (PRI), and a PRI-
based blind IQA (BIQA) framework. Different from traditional
reference image which is assumed to have a perfect quality,
PRI is generated from the distorted image and is assumed
to suffer from the severest distortion for a given application.
Based on the PRI-based BIQA framework, we develop distortion-
specific metrics to estimate blockiness, sharpness and noisiness.
The PRI-based metrics calculate the similarity between the
distorted image’s and the PRI’s structures. An image suffering
from severer distortion has higher degree of similarity with the
corresponding PRI. Through a 2-stage quality regression after
distortion identification framework, we then integrate the PRI-
based distortion-specific metrics into a general-purpose BIQA
method named blind PRI-based (BPRI) metric. The BPRI metric
is opinion-unaware (OU), and almost training-free except for
the distortion identification process. Comparative studies on 5
large IQA databases show that the proposed BPRI model is
comparable to the state-of-the-art opinion-aware- (OA-) and OU-
BIQA models. Furthermore, BPRI not only performs well on
natural scene images, but also is applicable to screen content
images. The MATLAB source code of BPRI and other PRI-based
distortion-specific metrics will be publicly available.

Index Terms—Blind image quality assessment (BIQA), pseudo
reference image (PRI), blockiness, sharpness, noisiness.
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Fig. 1. A comparison of PRI-based quality metric and traditional IQA metric.

I. INTRODUCTION

THE ubiquitous degradations existed in various visual
communication systems call for efficient and effective

image quality assessment (IQA) metrics which can predict the
perceptual quality of images accurately. The ultimate goal of
objective IQA is to develop computational metrics which can
compute quality scores well correlated to human perceptions.
During the past decades, dozens of IQA models have been
proposed [2], [3], [4]. Although there are many distinctive
ways to solve this problem, most of them share a common
framework. In visual communication systems, the target image
is usually degraded from an original perfect quality image
called reference image. According to the availability of the ref-
erence image, IQA metrics can be classified into full-reference
(FR), reduced-reference (RR) and no-reference (NR).

FR IQA metric can be interpreted as an image fidelity metric
which describes the similarity between two images. It usually
measures the target image’s deviation from the perfect quality
reference image [2], [3]. If we describe the problem in a
“quality axis”, FR IQA metric measures the “distance” from
the reference image to the target image. Although sometimes
the reference image is not available, we can still derive some
characteristics of the perfect quality images, and then measure
the distorted image’s deviation from such characteristics [4].
Therefore, whether the reference image is given or not, a com-
mon spirit of current IQA metrics is that: the perfect quality
image is considered as the “reference point” of those methods,
and the quality of the distorted image can be measured as a
“distance” from this reference point.

Under such a framework, naturally a question can be asked
is that “what about the opposite direction of the quality axis?”
Few literature has discussed this question. If we can define
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Fig. 2. A framework of the proposed PRI-based general-purpose BIQA metric, which is integrated from the proposed PRI-based distortion-specific metrics
through a 2-stage quality regression after distortion identification framework.

an extreme point in the opposite direction of the quality axis
which indicates the worst quality, then we can take it as
a new “base point” for quality assessment. Based on this
motivation, we generate a pseudo reference image (PRI) in
this work. Fig. 1 illustrates a comparison of PRI-based quality
metric and traditional IQA metric. Contrary to the conventional
perfect quality reference image, the PRI is located in the
opposite direction of the quality axis. It is derived from the
distorted image, and it suffers from the severest distortion.
After the generation of PRI, we can take the PRI as a new
base point, and measure the distorted image’s distance from
the PRI as the quality. Crete et al. [5] and Li et al. [6]
proposed blur metrics by comparing a blurred image and the
re-blurred image. The idea is close to the PRI-based IQA,
but the proposed metrics can only estimate sharpness. In this
work, we introduce the concept of PRI, and discuss the PRI-
based IQA framework systematically. We demonstrate that
the PRI-based framework is a general IQA framework, which
works not only for one specific distortion but also for various
other distortions. Moreover, the PRI-based framework can be
also used for general-purpose IQA by integrating PRI-based
distortion-specific IQA metrics.

To develop PRI-based IQA metrics, the following problems
need to be solved: (1) the definition of PRI; (2) the measure
of the quality distance. Since each type of distortion causes
specific artifacts, we need to define distortion-specific PRI to
be consistent with the characteristics of a given distortion. Also
it requires different distance measures for different distortion
types. In this work, we focus on blocking, blurring and
noising artifacts since these are the most common artifacts
in practical visual communication systems, and many other
complex distortions can be combinations of these artifacts.
We develop PRI-based quality metrics to estimate blockiness,
sharpness and noisiness. The PRI-based distortion-specific
metrics are then integrated into a general-purpose blind IQA
(BIQA) method through a 2-stage quality regression after
distortion identification framework, which is used in DIIVINE
[7] and performs distortion-specific quality assessment after
distortion identification. Fig. 2 illustrates a framework of
the proposed PRI-based general-purpose BIQA model. It is

worth mentioning that the proposed PRI-based method is
opinion-unaware (OU), and almost training-free except for the
distortion identification process.

Block-based compression causes blocking artifacts because
of the independent quantization of each individual block. The
blocking artifacts at the block boundaries together can form
some pseudo structures. We find that such pseudo structures
show certain degree of similarity in images compressed at
various compression levels. The pseudo structure and the gen-
uine image content structure both exist in the distorted image,
but they can be distinguished according to their positions.
The genuine image content structures can be everywhere,
while pseudo structures are distributed at the block boundaries.
To obtain the PRI, we compress the distorted image to the
utmost using the highest compression level in the encoder.
The distorted image’s and the PRI’s pseudo structures become
more and more similar as the compression level gets higher
and higher. In this paper, we propose a PRI-based blockiness
metric named pseudo structure similarity (PSS) by calculating
the similarity between pseudo structures of the target image
and the corresponding PRI.

Blurring and noising distortions both degrade the textures of
images, which significantly change the local image structures.
For example, some texture patterns such as edges or corners
will be turned into flat patterns because of blurring; whereas
flat patterns can be turned into texture patterns because of
noising. Thus measuring the change of local structures can be
an effective way to measure both sharpness and noisiness, and
we can utilize the same framework to estimate both artifacts.
However, it is not easy to measure sharpness/noisiness using
sole blurred/noisy images since local structures are highly
sensitive to image content. In this paper, we compare the
blurred/noisy images with the PRIs to reduce the influence
of image content. To get the PRI, we further blur the current
blurred image using a specific smoothing filter, and add a
certain intensity of noise to the current noisy image. The
further degraded images are taken as the PRIs. Local binary
pattern (LBP) [8] is selected to describe the local structures
because of its simplicity and high efficiency. We calculate the
similarity of specific LBPs between the blurred/noisy image
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and the corresponding PRIs. The proposed PRI-based sharp-
ness/noisiness metrics are referred as local structure similarity
(LSS), specifically LSSs for sharpness estimation and LSSn for
noisiness estimation. More blurred/noisy images have higher
LSS scores since blurring/noising can only cause significant
LBP changes in sharp/clean images.

The proposed PSS and LSS metrics both follow the frame-
work of PRI-based IQA illustrated in Fig. 1. We solve the
problem of IQA by measuring “how much worse the image
could be?” rather than the traditional “how bad the image
is?”. As illustrated in Fig. 2, we then develop a general-
purpose blind PRI-based (BPRI) IQA model by integrating the
distortion-specific PRI-based IQA metrics through a 2-stage
framework, in which we identify distortions first and then
perform distortion-specific quality assessment. We compare
the BPRI model with the state-of-the-art opinion-aware (OA)
and opinion-unaware (OU) general-purpose BIQA metrics on
5 large IQA databases, including LIVE [9], TID2013 [10],
CSIQ [11], SIQAD [12] and CCT [13]. The SIQAD database
is a recently-constructed screen content image (SCI) quality
assessment (QA) database, and the CCT database focuses on
cross-content-type IQA. Experimental results show that PRI-
based IQA is effective, and the proposed BPRI model is
superior or comparable to the state-of-the-art OA- and OU-
BIQA metrics.

The remainder of this paper is organized as follows. In Sec-
tion II, we review some related works, including the state-of-
the-art distortion-specific and general-purpose BIQA models.
In Section III, we describe the details of the proposed PRI-
based distortion-specific metrics, i.e., PSS and LSS. In Section
IV, we present the proposed general-purpose BPRI model. The
experimental results are given in Section V. Finally, Section
VI concludes this paper and gives some discussions.

II. RELATED WORK

A. Distortion-Specific BIQA Metric

1) Blockiness estimation: Blockiness is a common type
of distortion easily encountered in the visual communication
systems. It is usually caused by the relatively independent
processing of individual blocks which is involved in most
block-based compression schemes. During recent years, many
IQA models have been proposed to evaluate the perceptual
quality of JPEG images [1], [14], [15], [16], [17], [18],
[19]. Intuitively, JPEG image can be evaluated spatially from
the inter-block blocking effect and intra-block blurring effect
because of the within-block quantization and the discard
of high frequency information. Liu and Heynderickx [16]
combined the local blocking distortion with its local visibility
through visual masking. The regularities of pseudo structures
were measured in [18]. Zhan and Zhang [19] considered
blockiness and the luminance change within blocks. Wang
et al. [15] estimated blockiness through pixel changes across
block boundaries, and also estimated blurring through both
within-block differences and the zero-crossing rate of the
differencing image. In a previous work [1], we proposed a
pseudo structural similarity metric based on the PRI-based
IQA framework.

The problem can be also considered from the transform
domain. Bovik and Liu [14] modeled the blocking artifact
as a 2-D step function by constructing a new block from
two neighbouring blocks. They constructed the new block and
extracted needed parameters in the discrete cosine transform
(DCT) domain. In [17], the number of zero-valued DCT
coefficients was counted in each block, and the counts were
then weighted through a quality relevance map.

2) Sharpness estimation: Sharpness estimation is also a
nontrivial work because of the wide spread of blurring distor-
tion in various application scenes such as picture capturing and
image/video coding. Early sharpness estimators try to measure
sharpness via edge analysis. Ferzli and Karam [20] introduced
a concept of just noticeable blur (JNB), which described
the minimum blurring needed to be perceived near the edge
given a contrast higher than the just noticeable difference
(JND). Based on JNB, Narvekar and Karam [21] developed
a probabilistic model considering human’s sensitivity of blur
at various contrasts. Li et al. [22] proposed a sparse-based
sharpness metric since the spread of edges could be captured
by the sparse coefficients.

Estimating sharpness from the transform domain is al-
so a good strategy, since blurred image is often short of
high-frequency information. Vu and Chandler [23] applied a
three-level separable discrete wavelet transform (DWT) and
then a weighted average of the log-energies of the DWT
subbands was computed as the sharpness. A spectral and
spatial sharpness (S3) was proposed in [24]. S3 combined
a spectral estimator with a spatial estimator. Since blurring
introduced losses of local phase coherence (LPC), Hassen et
al. [25] proposed a LPC-based sharpness metric. Gu et al. [26]
estimated sharpness in an autoregressive parameter space.

3) Noisiness estimation: Noise estimation has been an
important and fundamental problem in the field of image
processing and computer vision. This problem can be solved
by estimating the intensity (typically the variance) of noise
[27], [28], [29]. Zoran and Weiss [27] estimated noise based
on the assumption that clean image should have a constant
kurtosis value throughout scales, and deviations from this were
due to noise. Liu et al. [28] inferred the noise as a function of
image intensity from a single image. Tang et al. [29] estimated
noise through statistical analysis and noise injection. However,
the intensity of noise sometimes can be deviated from the
perceptual quality of the noisy image. Thus some researchers
solve this problem from an IQA perspective of view, and
propose noise-specific IQA metrics [30], [31]. Zhai et al. [30]
proposed a dual-model approach based on the assumption that
human visual system had different behavioral patterns under
low and high noise levels. Liu et al. [31] proposed a blind IQA
model for noisy image based on the free energy principle [32].

B. General-Purpose BIQA Metric

1) OA Metric: Some general-purpose BIQA models are
based on natural scene statistics (NSS). DIIVINE [7] identifies
distortion first, and then conducts distortion-specific IQA using
NSS of the wavelet coefficients. BRISQUE [33] uses the
scene statistics of local luminance coefficients after mean
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Fig. 3. A framework of the PRI-based blockiness metric PSS. The red and green dots in the bottom 2 images denote the pseudo corners. Specially, the red
ones indicate that pseudo corners in the distorted image and PRI are overlapped. All pseudo corners can give an overall description of the pseudo structures.

subtraction and divisive normalization to quantify possible
losses of “naturalness”. BLIINDS-II [34] utilizes NSS of
discrete cosine transform (DCT) coefficients. Some other
measures integrate handcrafted features which also rely on the
statistical regularities of natural images. For example, the free
energy principle is utilized in [32] and [35]. Learning-based
features can be utilized for IQA. For example, unsupervised
feature learning is used in CORNIA [36] and HOSA [37].
Li et al. [38] considered statistical structural and luminance
features. Although different strategies are considered in the
above metrics, a common thing is that they are all OA metrics.
Ground-truth quality scores and support vector regression are
needed to learn the mapping from the quality features to the
final quality score.

2) OU Metric: Due to the limited generalizability of the
OA metrics, some OU metrics which use no opinion scores
for training are proposed. NIQE [39] utilizes spatial domain
NSS. It uses multivariate gaussian models (MVGs) to fit the
NSS features, and the quality is measured as the distance
between MVGs. IL-NIQE [40] follows the same framework,
but different features are used. QAC [41] performs quality-
aware clustering and learns a set of quality-aware centroids to
act a codebook to infer the quality. LPSI [42] is a training-
free method which utilizes statistical features extracted from
binary patterns of local image structures. OU metrics have
strong generalizability, but limited metrics are available now.

III. PRI-BASED DISTORTION-SPECIFIC METRICS -
PSS AND LSS

A. PRI-based Blockiness Measure - PSS

As described in Section I, the proposed blockiness metric
PSS is based on the PRI. We first compress the distorted

image to the PRI using the heaviest compression level in the
encoder. The pseudo structures of the distorted image and the
corresponding PRI are then detected, and finally the blockiness
is measured as the similarity between two images’ pseudo
structures. Fig. 3 illustrates a framework of the PSS metric.
More details are as follows.

1) The PRI: The PRI has a worse quality than the distorted
image, and it is compressed from the distorted image. Given
the distorted image A, we derive the PRI M by

M = JPEG(A, QT ), (1)

where JPEG denotes the JPEG encoder, and QT is the
utilized quantization table which is fixed and represents a
very low compression quality. Although we use the PRI as a
“reference”, PSS is still a NR model since the PRI is derived
from the distorted image. As shown in Fig. 3, the upper left
image is the PRI of the upper right image.

2) Pseudo Corners and Structures: Since corners can de-
scribe image structures, they are frequently used in various
applications such as video tracking and motion detection
[43]. Corners could be also used to estimate blockiness, for
example, Min et al. [13] considered the regularity of corners
by quantifying the ratio of pseudo corners. In this paper, we
also detect corners, and then use them to represent image
structures. In JPEG compressed images, image structures are
composed of both genuine image content structure and artifi-
cial pseudo structure resulted from excessive compression. We
differentiate them by analysing the positions of the detected
corners. If the detected corners are distributed at 4 corners
of the 8 × 8 block, they are identified as pseudo corners.
Otherwise, if they are detected at some ordinary positions,
they are taken as regular corners. Then the pseudo structures
of an image can be described by all detected pseudo corners.
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(a) DMOS=22, PSS=0.09 (b) DMOS=42, PSS=0.26 (c) DMOS=90, PSS=0.82

Fig. 4. Pseudo structures in images of different compression degrees. DMOS
is the difference mean opinion score, and PSS is the quality score computed
by the PSS metric. Similar to Fig. 3, the red and green dots denote the pseudo
corners. There are more overlapping pseudo corners in more distorted images.

Given an image A = (aij)h×w, its pseudo structure is
defined as P = (pij)h×w, where h,w indicate the image rows
and columns, and the elements are

pij =

{
1 if aij ∈ C, mod(i,N) < 2, mod(j,N) < 2
0 otherwise , (2)

where aij ∈ C means that a corner is detected at pixel aij ;
mod calculates the remainder; mod(i,N) < 2, mod(j,N) <
2 denotes position (i, j) is one of the block corner, and the
block size is N = 8. Shi and Tomasi’s minimum eigenvalue
method [43] is used to detect corners. We use P

d
= (p

dij)h×w
and P

m
= (p

mij)h×w to denote the pseudo structures of the
distorted image and the PRI. As illustrated in the bottom two
images of Fig. 3, the red and green dots denote pseudo corners
(pij = 1). All dots together give a description of pseudo
structures P

d
and P

m
.

3) Pseudo Structure Similarity: As illustrated in Fig. 3, if
we compare P

d
and P

m
, we can find certain degree of simi-

larity between them, and there are lots of overlapping pseudo
corners. We use Po = (poij)h×w to denote the overlapping
pseudo structures, i.e., the overlap between P

d
= (p

dij)h×w
and P

m
= (p

mij)h×w

P
o

= (p
oij)h×w = (p

dij · pmij)h×w. (3)

The red dots in Fig. 3 and Fig. 4 describes P
o
. Fig. 4

illustrates pseudo structures in images of different compression
degrees. Note that when the image is more compressed, its
pseudo structures P

d
will be more similar to the PRI’s pseudo

structures Pm , i.e., there are more overlapping pseudo corners.
Thus we introduce pseudo structure similarity (PSS) to

estimate blockiness. We define the number of overlapping
pseudo corners as No, and the number of pseudo corners in
Pm as Nm

No =
∑
i,j

p
oij ; Nm =

∑
i,j

p
mij . (4)

Then the pseudo structure similarity (PSS) is described as

PSS =
No

Nm + 1
, (5)

where the constant 1 is added for stability reason. Intuitively,
PSS score denotes the overlapping degree between P

d
and

P
m

. Severer blockiness results in higher PSS value. As shown
in Fig. 4, PSS correlates well with the blockiness degree and
perceptual quality. More precise quantitative validation of the
proposed method is given in Section V.

4) Implementation Details: Note that PSS involves very
few parameters. We only need to set several parameters when
deriving the PRI and detecting corners. In Eq.(1), we use
the JPEG encoder in MATLAB. Specifically, the “imwrite”
function is used. The quantization table QT corresponds to the
“Quality” parameter of “imwrite”, which is set to the extreme
point 0. It indicates the severest compression the encoder
can provide. In Eq.(2), we use the MATLAB implementation
of the minimum eigenvalue method [43] to detect corners.
Specifically, “corner” function is used. The maximum number
of detected corners is set as a very large number, which means
that we do not bound the number in normal situations. A
3× 3 Gaussian mask with a standard deviation of 0.5 is used
to filter the target image first. The “QualityLevel” parameter
which specifies the minimum corner quality is set as 0.001.
The quality parameter in PSS is set as a very small value so
that we can detect more corners to describe the structures.

B. PRI-based Sharpness and Noisiness Metrics - LSS

Following the same PRI-based IQA framework described
above, we propose PRI-based metrics LSSs and LSSn to
estimate sharpness and noisiness. Fig. 5 illustrates a frame-
work of LSS. LSSs and LSSn both follow this framework.
The differences are that LSSs and LSSn have different PRI
definitions, and different LBPs are extracted to describe the
local structures. In LSSs, the current blurred image is blurred
to the PRI using a specific smoothing filter; while in LSSn,
certain intensity of noise is added to the current noisy image
to get the PRI. Different LBPs are then extracted to describe
the local structures, since different LBPs can be sensitive
to different distortions. Finally, LSS calculates the similarity
between LBPs extracted from the distorted image and the PRI
as the quality score.

1) The PRI: The PRI in LSSs is blurred from the given
distorted image A

M = f ⊗A =
1

9

1 1 1
1 1 1
1 1 1

⊗A, (6)

where M is the derived PRI; f is the blurring filter, and we
set it as an averaging filter; ⊗ is the convolution operator.

The PRI in LSSn is created by adding Gaussian noise to the
given distorted image A

M = A +N (0, v), (7)

where M is the created PRI; N (0, v) generates normally
distributed random values with 0 mean and v variance. Similar
to PSS, LSSs and LSSn are also NR metrics. Fig. 5 shows an
example of PRI in LSSs.

2) Local Binary Patterns and Structures: LBP [8] is a
powerful visual descriptor frequently used in many image
processing and computer vision applications. LBP was also
previously used in IQA [42], [38], [44]. Wu et al. [42] utilized
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Fig. 5. A framework of the PRI-based metric LSS (we illustrate LSSs as an example here). The white pixels in the bottom two maps denote the desired local
structures are detected. Local structures are described by LBPs, and LSS calculates the similarity between particular LBPs of the distorted image and PRI.

statistical features of local image structures described by LBPs.
Li et al. [38] considered the histograms of LBPs as one part of
the integrated quality features. Wu et al. [44] proposed a RR
IQA metric by measuring the change of structural histogram
described through LBP. The underlying assumption of the
above LBP-based IQA metrics is that quality degradation can
change local image structures which can be modeled by LBPs.
For example, blurring can smooth the textures of images,
and turn some texture patterns into flat patterns; whereas flat
patterns can be turned into texture patterns because of noising.
So we extract LBPs and quantify such local structure change
to measure sharpness and noisiness.

LBP compares the luminance values of a center pixel gc and
its circularly symmetric neighborhoods gp, and then binarizes
the differences between them using an unit step function,
and codes the binarization results by summing them into a
numerical value

LBPP,R =
P−1∑
p=0

u(gp − gc), (8)

where P,R indicate the neighbour number and radius of the
LBP structure; u(∗) is the unit step function

u(x) =

{
1 x ≥ 0
0 x < 0

. (9)

Note that the LBP definition in Eq.(8) is different from the
non-uniform definition in [8], where the authors code the
binarization results by attaching a factor 2p to the binary
results of pixel gp. It is also slightly different from their
uniform definition. Here we do not code the LBP which has
many spatial transitions as a separate number for simplicity.

In this paper, we set P = 4 and R = 1 for simplicity. It does
not require any interpolation and the possible LBP values are
also quite few. We find that several specific LBPs are sensitive
to blurring, while some other LBPs are sensitive to noising.

From the blurred image to the corresponding PRI, LBP4,1 = 2
and LBP4,1 = 3 change the most significantly; while from
the noisy image to the corresponding PRI, LBP4,1 = 0 and
LBP4,1 = 1 change the most significantly. Thus we quantify
the changes of different LBPs as the quality metric for blur
and noise. In LSSs, we define the desired local structure map
as L = (lij)h×w, where the elements are

lij =

{
1 if LBP4,1 = 2 or LBP4,1 = 3
0 otherwise . (10)

Similarly, the local structure map L = (lij)h×w in LSSn is
defined as

lij =

{
1 if LBP4,1 = 0 or LBP4,1 = 1
0 otherwise . (11)

We adopt the same calculation process for both images, and
denote the local structure maps of the distorted image and the
PRI as L

d
= (l

dij)h×w and L
m

= (l
mij)h×w, respectively.

The bottom two images in Fig. 5 illustrate examples of L
d

and Lm .
3) Local Structure Similarity: As described above, we

measure the similarity between L
d

= (l
dij)h×w and Lm =

(l
mij)h×w as the quality. We define the overlap between them

as L
o

= (l
oij)h×w, which can be calculated as

Lo = (loij)h×w = (l
dij · lmij)h×w. (12)

Fig. 6 illustrates some L
o

examples of images of different
blurring and noising degrees. Similar to PSS, there are more
overlap between the feature maps of the distorted image and
the PRI in more distorted images. We can also define the union
between L

d
and Lm as Lu = (luij)h×w, whose elements are

L
u

= (l
uij)h×w = (l

dij |lmij)h×w. (13)
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DMOS=22, LSSs=0.68 DMOS=40, LSSs=0.80 DMOS=65, LSSs=0.89 DMOS=29, LSSn=0.25 DMOS=60, LSSn=0.31 DMOS=102, LSSn=0.44

Fig. 6. Local structure similarity in images of different distortion levels. 1st row: cropped distorted images; 2nd row: the corresponding Lo maps, i.e., the
overlap between the distorted image’s and the PRI’s local structure maps; DMOS: difference mean opinion score; LSSs, LSSn: the quality scores computed
by the LSS metrics. There are more overlap in more distorted images.

Then the proposed local structure similarity (both LSSs and
LSSn) can be defined as

LSS =
No

Nu + 1
, (14)

where No and Nu mean the number of non-zero elements in
the Lo and Lu maps, which can be calculated through

No =
∑
i,j

l
oij ; Nu =

∑
i,j

l
uij . (15)

Similar to PSS, LSS indicates the overlapping degree between
L

d
and L

m
, and more blurred/noisy images have higher LSS

values. As shown in Fig. 6, LSS scores provide good predic-
tions of the sharpness and noisiness degrees. Note that LSS
adopts a global averaging strategy. Considering the success
of percentile pooling in sharpness estimation, LSS may be
improved by incorporating visual attention [45], [46], [47].

4) Implementation Details: Compared with PSS, LSSs and
LSSn involve even fewer parameters. As described above,
LSSs uses a 3 × 3 averaging filter to derive the PRI, and
Gaussian noise with 0 mean and 0.5 variance is added to
create the PRI in LSSn. In both LSS metrics, LBP4,1 is used
to calculate the local structure maps.

IV. PRI-BASED GENERAL-PURPOSE METRIC - BPRI
Motivated by DIIVINE [7], we integrate the above PRI-

based distortion-specific metrics, i.e., PSS, LSSs and LSSn,
into a general-purpose blind PRI-based (BPRI) metric through
a 2-stage quality regression after distortion identification
framework. Different from DIIVINE [7] which needs to learn
a regressor to integrate a large group of features, single quality
scores computed by PSS, LSSs and LSSn are effective enough
to describe the quality degradation caused by blockiness, blur
and noise. Thus it is feasible to integrate PSS, LSSs and LSSn
in an opinion-unaware manner.

A. Score Alignment

First we need to align the quality scores, since PSS, LSSs
and LSSn respond differently to the quality variations. The

quality scores computed by PSS, LSSs and LSSn are denoted
as qb, qs and qn, respectively. We use the following five-
parameter logistic function to map the quality scores

q′ = λ1

(
1

2
− 1

1 + eλ2(q−λ3)

)
+ λ4q + λ5, (16)

where q, q′ are the original and mapped quality scores, re-
spectively; {λi|i = 1, 2, ..., 5} are five parameters determined
through curve fitting. Quality scores mapped from qb, qs and
qn are denoted as q′b, q

′
s and q′n, respectively.

To fit the parameters, we create an image set having no
content overlap with the widely used IQA databases. Specifi-
cally, we select 100 high quality natural images from a public
database [48], and generate the distorted images using the 4
most common types of distortions, i.e., JPEG compression
(JPEG), Gaussian blur (GB), white Gaussian noise (WN), and
JPEG2000 compression (JP2K). For each distortion type, 5
quality levels are selected to cover a wide range of perceptual
quality. A total of 2,000 distorted images are used to fit the
parameters. Target scores are also needed to conduct the curve
fitting. In IQA model evaluation, the ground-truth quality
scores are used. In consideration of the successes of FR IQA
metrics, we use FR metric to guide the score alignment, i.e.,
all distortion-specific quality scores are non-linearly mapped to
the quality scores of FR metric. GMSD [49] is used in BPRI.
We will also try other FR metrics, and test the performance in
Section V. After score alignment, q′b, q

′
s and q′n are comparable

and respond consistently to the quality variations.

B. Distortion Identification and Quality Regression
We train a classifier to identify the distortions. For simplic-

ity, we utilize qb, qs and qn as features for the identification.
The image set described in Section IV-A is used as the
training set Φ. Considering the successes of support vector
machine (SVM) in classification problems, we select SVM
for classification. Given the features q = [qb, qs, qn]T and the
label l ∈ {b, s, n} of each image and the training set Φ, we
can train the classifier

classifier = SVM TRAIN(qi, li), i ∈ Φ, (17)



1520-9210 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2017.2788206, IEEE
Transactions on Multimedia

8

where i is the image index. Then given the quality feature q
of any test image, we can identify distortions using the pre-
trained classifier

p = SVM PREDICT(q, classifier), (18)

where p = [pb, ps, pn]T are the predicted probabilities of
different distortions.

LIBSVM [50] is adopted to implement SVM with a radial
basis function (RBF) kernel. We follow the common SVM
parameter settings used in the training of OA-BIQA metrics,
and only change the model type from “epsilon-SVR” to “C-
SVC”, i.e., from regression to classification. During the score
alignment and classifier training, the JP2K subset is labeled
as GB since we do not design distortion-specific metric for
JP2K and the main distortion in JP2K compressed images is
blur. We adopt a probability weighting strategy and the final
quality score of BPRI is then described as

Q = pT · q′, (19)

where q′ = [q′b, q
′
s, q
′
n]T are the aligned scores. As an

alternative, we can also adopt a hard classification strategy,
in which we classify the distortion type explicitly and use the
corresponding aligned score as the quality. We will also test
the performance of such strategy in Section V.

V. EXPERIMENTAL RESULTS

To validate the proposed BPRI quality model, first we
test BPRI and the state-of-the-art BIQA models on the four
most common distortion types mentioned above, then we will
test all BIQA models’ generalizability to other distortions.
We test BIQA models on images of two most dominant
types we may encounter in realistic visual communication
systems, i.e., natural scene image (NSI) and screen content
image (SCI). SCI is also an indispensable part of visual
communication systems, and SCI QA becomes more and more
important because of the widespread of the so-called “screen
content” which is often computer-generated and thus has some
extraordinary characteristics [12], [13].

A. Experimental Protocol

1) Databases: Five large IQA databases are used as
testbeds, including LIVE [9], TID2013 [10], CSIQ [11],
SIQAD [12] and CCT [13]. The first 3 are commonly used
NSI QA databases. The SIQAD database is constructed to
facilitate the research of SCI QA [12]. The CCT is a cross-
content-type IQA database constructed to test IQA models’
generalizability to other content types [13]. It includes 1,320
NSIs, computer graphic images (CGIs) and SCIs compressed
by the high efficiency video coding (HEVC) intra coding
method and the screen content compression (SCC) extension
of HEVC. The main artifacts introduced by HEVC and HEVC-
SCC are blurring and blockiness. Current IQA studies are
mostly concentrated on NSI, and there are more publicly
available NSI QA databases. The first four databases share four
common distortion types, i.e., JPEG, GB, WN and JP2K, and
there are 634, 500, 600 and 560 commonly distorted images in
each database, respectively. We will test BIQA models on the

commonly distorted images first, and then test their distortion
generalizability on other non-common distortions included in
the LIVE, TID2013, CSIQ, SIQAD, and CCT databases.

2) Comparing Algorithms: We compare the proposed BPRI
model with the state-of-the-art BIQA models, including:
• OA-BIQA models: DIIVINE [7], BLIINDS-II [34] and

BRISQUE [33] use wavelet, DCT and spatial domain
NSS, respectively. NFERM [35] is based on free energy
principle. CORNIA [36] and HOSA [37] are both based
on unsupervised feature learning.

• OU-BIQA models: NIQE [39] and IL-NIQE [40] use
spatial domain NSS. QAC [41] performs quality-aware
clustering and learns a codebook. LPSI [42] utilizes local
image structure statistics.

We use the original implementations released by the authors.
A short review of the above BIQA models can be found in
Section II-B.

3) Evaluation Criteria: To evaluate the IQA models, we
follow the common procedures [13], [51], [52], and first
map the predicted quality scores using the five-parameter
logistic function as shown in Eq.(16). Different from the score
alignment, q and q′ now are the predicted and mapped quality
scores; {λi|i = 1, 2, ..., 5} are fitted parameters using the
predicted quality scores and the ground-truth quality scores.
Then the consistency between the mapped score and the
ground-truth is calculated to measure the performance of the
IQA model. We choose the following 3 mainstream metrics
as the evaluation criteria.
• Spearman rank-order correlation coefficient (SRCC). It

denotes the monotonicity between the ground truth and
predicted score.

• Pearson linear correlation coefficient (PLCC), which
measures the IQA metric’s prediction linearity.

• Root-mean-square error (RMSE), which calculates the
error between the mapped score and the ground truth.

B. Performance on Common Distortions

We first test all BIQA models on common distortions. Table
I lists the performance comparison results. Besides single
distortions, we also test on all 4 types of distorted images.
All OA-BIQA models are trained on the LIVE, thus we do
not list their performance on the LIVE in Table I to ensure
complete separation of training and testing. We mainly com-
pare the BPRI with OU-BIQA models on the LIVE. Similarly,
CORNIA and HOSA learn a codebook using images from the
CSIQ, thus their performance is excluded on the CSIQ. For
the proposed BPRI method, both the probability weighting
strategy and the hard classification strategy are tested, which
are denoted as BPRI(p) and BPRI(c), respectively. We have
highlighted the top 2 models according to each criterion. Mean
SRCC and PLCC performance averaged over all databases and
the total hit count (the number of times ranked in the top 2)
are also reported in Table I.

It can be observed that the proposed BPRI models remain
on the top on most databases, especially on the SIQAD where
the proposed methods show remarkable superiority. Most of
the current models are not so good at handling SCIs, while the
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TABLE I
PERFORMANCE COMPARISON ON COMMON DISTORTIONS

Criteria Database Dist. OA Models OU Models
DIIVINE BLIINDS-II BRISQUE NFERM CORNIA HOSA NIQE QAC IL-NIQE LPSI BPRI(c) BPRI(p)

SRCC

LIVE

JPEG - - - - - - 0.9410 0.9362 0.9424 0.9677 0.9665 0.9699
GB - - - - - - 0.9326 0.9134 0.9154 0.9156 0.9268 0.9243
WN - - - - - - 0.9716 0.9509 0.9809 0.9557 0.9843 0.9854

JP2K - - - - - - 0.9187 0.8621 0.8944 0.9300 0.9080 0.9069
All - - - - - - 0.9168 0.8857 0.9153 0.8333 0.9288 0.9304

TID2013

JPEG 0.6288 0.8360 0.8448 0.8722 0.8958 0.8957 0.8468 0.8369 0.8340 0.9123 0.9067 0.9107
GB 0.8344 0.8367 0.8137 0.8501 0.9274 0.8695 0.7986 0.8464 0.8148 0.8408 0.8725 0.8593
WN 0.8553 0.6468 0.8520 0.8581 0.7354 0.8172 0.8187 0.7427 0.8767 0.7690 0.9182 0.9181

JP2K 0.8534 0.8883 0.8927 0.8097 0.9009 0.9013 0.8890 0.7895 0.8583 0.8988 0.8830 0.8680
All 0.7820 0.7673 0.8401 0.8594 0.8787 0.8681 0.7972 0.8055 0.8417 0.7046 0.8990 0.8937

CSIQ

JPEG 0.7996 0.8986 0.9049 0.9223 - - 0.8830 0.9016 0.8996 0.9502 0.9181 0.9295
GB 0.8716 0.8766 0.9026 0.8964 - - 0.8925 0.8362 0.8578 0.9060 0.9036 0.9002
WN 0.8663 0.7597 0.9250 0.9220 - - 0.8090 0.8222 0.8500 0.6664 0.9313 0.9358

JP2K 0.8308 0.8951 0.8665 0.9050 - - 0.9065 0.8699 0.9061 0.9075 0.8628 0.8620
All 0.8284 0.8511 0.8993 0.9143 - - 0.8710 0.8416 0.8803 0.7712 0.8957 0.8999

SIQAD

JPEG 0.0818 0.4299 0.2703 0.4171 0.1843 0.3990 0.4422 0.1451 0.2919 0.7149 0.7377 0.7022
GB 0.0870 0.4404 0.6318 0.7704 0.6497 0.2324 0.5266 0.6238 0.4556 0.6663 0.8350 0.8349
WN 0.8865 0.6361 0.8238 0.8357 0.6623 0.6768 0.8245 0.8416 0.8143 0.8648 0.8453 0.8452

JP2K 0.0928 0.2300 0.0169 0.2852 0.5721 0.4371 0.2458 0.1937 0.3837 0.4612 0.6203 0.5728
All 0.3575 0.2752 0.4164 0.6844 0.4934 0.3681 0.4816 0.5631 0.5167 0.4150 0.7802 0.7714

Average 0.6438 0.6845 0.7267 0.7868 0.6900 0.6465 0.7857 0.7604 0.7865 0.8026 0.8762 0.8710

PLCC

LIVE

JPEG - - - - - - 0.9516 0.9437 0.9589 0.9748 0.9740 0.9769
GB - - - - - - 0.9446 0.9112 0.9327 0.9150 0.9256 0.9237
WN - - - - - - 0.9763 0.9280 0.9866 0.9645 0.9874 0.9882

JP2K - - - - - - 0.9264 0.8658 0.9051 0.9355 0.9110 0.8934
All - - - - - - 0.9162 0.8777 0.9164 0.8440 0.9304 0.9320

TID2013

JPEG 0.6643 0.8774 0.8997 0.9613 0.9338 0.9181 0.8929 0.8693 0.8997 0.9536 0.9603 0.9626
GB 0.8479 0.8492 0.8476 0.8494 0.9214 0.8789 0.8190 0.8478 0.8475 0.8355 0.8744 0.8627
WN 0.8590 0.6480 0.8509 0.8759 0.7366 0.8189 0.8272 0.7972 0.8837 0.7749 0.9262 0.9265

JP2K 0.9057 0.9203 0.9178 0.8587 0.9263 0.9347 0.9066 0.8093 0.8896 0.9163 0.9013 0.8890
All 0.7859 0.7912 0.8662 0.8764 0.8907 0.8901 0.8091 0.8051 0.8576 0.8114 0.8895 0.8812

CSIQ

JPEG 0.8239 0.9377 0.9463 0.9678 - - 0.9347 0.9377 0.9546 0.9693 0.9706 0.9689
GB 0.8993 0.8930 0.9275 0.9218 - - 0.9249 0.8565 0.8937 0.9298 0.9182 0.9161
WN 0.8878 0.7743 0.9376 0.9247 - - 0.8113 0.8781 0.8638 0.6873 0.9445 0.9476

JP2K 0.8962 0.9148 0.8972 0.9379 - - 0.9264 0.8951 0.9264 0.9183 0.8916 0.8911
All 0.8556 0.8792 0.9240 0.9399 - - 0.8880 0.8736 0.9070 0.8657 0.9175 0.9188

SIQAD

JPEG 0.1460 0.4696 0.2856 0.4221 0.2726 0.4017 0.4473 0.3687 0.4013 0.7302 0.7525 0.7332
GB 0.4632 0.4585 0.6597 0.7579 0.6834 0.4296 0.6066 0.6255 0.5505 0.6551 0.8462 0.8466
WN 0.8869 0.6415 0.8478 0.8537 0.6763 0.6843 0.8339 0.8526 0.8147 0.8757 0.8927 0.8933

JP2K 0.1438 0.3166 0.2775 0.3176 0.5975 0.4708 0.3752 0.2448 0.4752 0.5359 0.6297 0.5804
All 0.4043 0.3340 0.4962 0.7271 0.4983 0.3887 0.4996 0.5955 0.5400 0.4766 0.7982 0.7930

Average 0.6980 0.7137 0.7721 0.8128 0.7137 0.6816 0.8109 0.7892 0.8202 0.8285 0.8921 0.8863

RMSE

LIVE

JPEG - - - - - - 9.7881 10.534 9.0327 7.1003 7.2118 6.8035
GB - - - - - - 6.0625 7.6091 6.6621 7.4539 6.9904 7.0758
WN - - - - - - 6.0507 10.423 4.5715 7.3908 4.4300 4.2847

JP2K - - - - - - 9.5003 12.624 10.729 8.9108 10.403 11.337
All - - - - - - 10.833 12.953 10.822 14.498 9.9065 9.7964

TID2013

JPEG 1.1256 0.7226 0.6573 0.4151 0.5390 0.5968 0.6780 0.7445 0.6575 0.4536 0.4199 0.4081
GB 0.6616 0.6589 0.6622 0.6585 0.4850 0.5952 0.7160 0.6618 0.6623 0.6858 0.6056 0.6310
WN 0.3631 0.5401 0.3725 0.3421 0.4796 0.4070 0.3985 0.4281 0.3319 0.4482 0.2674 0.2669

JP2K 0.7218 0.6661 0.6762 0.8728 0.6417 0.6054 0.7188 1.0004 0.7777 0.6819 0.7377 0.7797
All 0.8626 0.8530 0.6971 0.6717 0.6340 0.6357 0.8197 0.8273 0.7174 0.8153 0.6373 0.6593

CSIQ

JPEG 0.1734 0.1063 0.0989 0.0770 - - 0.1088 0.1063 0.0912 0.0752 0.0736 0.0757
GB 0.1253 0.1290 0.1071 0.1111 - - 0.1090 0.1479 0.1286 0.1055 0.1135 0.1149
WN 0.0772 0.1062 0.0583 0.0639 - - 0.0981 0.0803 0.0845 0.1219 0.0551 0.0536

JP2K 0.1402 0.1277 0.1396 0.1096 - - 0.1190 0.1409 0.1190 0.1251 0.1431 0.1434
All 0.1463 0.1346 0.1080 0.0965 - - 0.1300 0.1375 0.1190 0.1415 0.1124 0.1116

SIQAD

JPEG 9.2958 8.2959 9.0051 8.5182 9.0406 8.6050 8.4041 8.7345 8.6065 6.4203 6.1880 6.3894
GB 13.450 13.487 11.405 9.9010 11.079 13.704 12.065 11.841 12.669 11.467 8.0861 8.0781
WN 6.8920 11.443 7.9098 7.7688 10.988 10.877 8.2320 7.7941 8.6487 7.2015 6.7208 6.7047

JP2K 10.285 9.8587 9.9852 9.8552 8.3342 9.1696 9.6338 10.077 9.1446 8.7752 8.0742 8.4633
All 12.815 13.207 12.165 9.6200 12.148 12.910 12.138 11.257 11.794 12.318 8.4399 8.5368

#Hit 1/47 1/47 4/47 7/47 10/32 6/32 9/62 0/62 4/62 16/62 34/62 34/62
Time (seconds/image) 8.5404 22.951 0.7183 23.773 2.8918 0.2198 0.1072 0.0426 3.4352 0.0144 0.4959 0.5006

proposed methods perform pretty well on SCIs and show good
consistency across image content types. It is not surprising
since most current BIQA models are implicitly designed for
NSIs and rely on some statistics of NSIs, while the quality
features utilized by the BPRI methods are not restricted to
natural scenes.

C. Performance on Non-common Distortions
We test all BIQA models’ generalizability to other dis-

tortions from 3 aspects: the whole TID2013 database which

includes 24 distortion types; the CCT database which includes
3 content types and 2 distortion types; and non-common dis-
tortions in the LIVE, CSIQ, and SIQAD databases including
fastfading (FF), additive pink Gaussian noise (pWN), contrast
change (CC), motion blur (MB), and layer-segmentation based
compression (LSC). The corresponding performance compar-
ison results are listed in Table II, Table III, and Table IV
respectively. We only report SRCC performance for simplicity.
Similar results can be obtained according to other criteria.

From Table II, it is observed that CORNIA, HOSA, IL-
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TABLE II
SRCC PERFORMANCE ON THE TID2013 DATABASE

Distortion Types DIIVINE BLIINDS-II BRISQUE NFERM CORNIA HOSA NIQE QAC IL-NIQE LPSI BPRI(c) BPRI(p)

Additive Gaussian noise 0.8553 0.6468 0.8520 0.8581 0.7354 0.8172 0.8187 0.7427 0.8767 0.7690 0.9182 0.9181
Additive noise in color components 0.7120 0.4762 0.7089 0.7096 0.7076 0.7534 0.6701 0.7184 0.8159 0.4955 0.8600 0.8587

Spatially correlated noise 0.4626 0.5862 0.4916 0.2184 0.6892 0.5812 0.6659 0.1694 0.9233 0.6968 0.4718 0.5293
Masked noise 0.6752 0.6183 0.5767 0.2210 0.7141 0.5565 0.7464 0.5927 0.5134 0.0462 0.7381 0.7479

High frequency noise 0.8778 0.7229 0.7526 0.8813 0.7972 0.8650 0.8454 0.8628 0.8691 0.9250 0.9285 0.9263
Impulse noise 0.8063 0.6525 0.6289 0.1728 0.7634 0.5592 0.7446 0.8003 0.7556 0.4324 0.4547 0.4585

Quantization noise 0.1650 0.7370 0.7932 0.7747 0.0922 0.6794 0.8514 0.7089 0.8721 0.8537 0.4890 0.4898
Gaussian blur 0.8344 0.8367 0.8137 0.8501 0.9274 0.8695 0.7986 0.8464 0.8148 0.8408 0.8725 0.8593

Image denoising 0.7231 0.6884 0.5849 0.6389 0.8459 0.8453 0.5900 0.3381 0.7494 0.2487 0.4322 0.4210
JPEG compression 0.6288 0.8360 0.8448 0.8722 0.8958 0.8957 0.8468 0.8369 0.8340 0.9123 0.9067 0.9107

JPEG2000 compression 0.8534 0.8883 0.8927 0.8097 0.9009 0.9013 0.8890 0.7895 0.8583 0.8988 0.8830 0.8680
JPEG transmission errors 0.2387 0.1098 0.3163 0.1322 0.6991 0.6552 0.0006 0.0491 0.2819 0.0911 0.7359 0.7887

JPEG2000 transmission errors 0.0606 0.6409 0.3595 0.1684 0.6762 0.3834 0.5114 0.4065 0.5240 0.6106 0.4431 0.4883
Non eccentricity pattern noise 0.0598 0.0997 0.1459 0.0646 0.2332 0.1764 0.0682 0.0477 0.0808 0.0520 0.0046 0.0086
Local block-wise distortions 0.0928 0.2440 0.2233 0.2020 0.2287 0.2688 0.1218 0.2474 0.1334 0.1372 0.2367 0.2333

Mean shift 0.0104 0.0963 0.1241 0.0213 0.0844 0.1276 0.1639 0.3059 0.1840 0.3409 0.0942 0.1106
Contrast change 0.4601 0.0011 0.0404 0.2178 0.1814 0.1377 0.0171 0.2067 0.0136 0.1992 0.1983 0.1846

Change of color saturation 0.0684 0.0119 0.1126 0.3067 0.0353 0.0479 0.2481 0.3683 0.1655 0.3018 0.2982 0.3786
Multiplicative Gaussian noise 0.7873 0.6193 0.7242 0.7162 0.6574 0.7314 0.6934 0.7902 0.6936 0.6959 0.8620 0.8612

Comfort noise 0.1156 0.1663 0.0076 0.1427 0.5235 0.3658 0.1544 0.1521 0.3614 0.0181 0.0973 0.0691
Lossy compression of noisy images 0.6327 0.4552 0.6856 0.6541 0.8654 0.7266 0.8023 0.6395 0.8287 0.2356 0.5975 0.5977

Color quantization with dither 0.4362 0.7677 0.7652 0.4790 0.3919 0.8017 0.7881 0.8731 0.7504 0.8998 0.6797 0.6753
Chromatic aberrations 0.6608 0.6445 0.6166 0.6430 0.8183 0.7209 0.5671 0.6249 0.6793 0.6953 0.7248 0.7253

Sparse sampling and reconstruction 0.8334 0.8257 0.7841 0.7847 0.8536 0.8564 0.8340 0.7856 0.8643 0.8620 0.7313 0.7873
Average 0.5021 0.5155 0.5352 0.4808 0.5966 0.5968 0.5599 0.5376 0.6018 0.5108 0.5691 0.5790

#Hit 2 1 0 1 8 6 1 5 5 6 6 9

TABLE III
SRCC PERFORMANCE ON THE CCT DATABASE

Models NSI CGI SCI All Average #Hit
DIIVINE 0.5383 0.5995 0.1575 0.3634 0.4147 0

BLIINDS-II 0.7216 0.6662 0.2017 0.2424 0.4580 0
BRISQUE 0.5866 0.6182 0.5241 0.1247 0.4634 0
NFERM 0.6845 0.6745 0.3512 0.2382 0.4871 0
CORNIA 0.6843 0.7573 0.2174 0.4700 0.5323 0

HOSA 0.7692 0.7457 0.0239 0.2895 0.4571 1
NIQE 0.6693 0.6911 0.2923 0.2505 0.4758 0
QAC 0.7511 0.8226 0.0257 0.3783 0.4944 2

IL-NIQE 0.5674 0.6463 0.3453 0.1599 0.4297 0
LPSI 0.7487 0.7705 0.0385 0.4474 0.5013 1

BPRI(c) 0.7453 0.7626 0.5751 0.4768 0.6400 3
BPRI(p) 0.7392 0.7618 0.6352 0.4815 0.6544 3

NIQE and the proposed BPRI methods are the top models on
the TID2013 according to the average performance and the hit
count. The BPRI methods generalize to other distortion types
well though they are integrated by three PRI-based distortion-
specific metrics. On the CCT database, both the NSI, CGI, SCI
subsets and the whole database are tested. It can be observed
from Table III that the proposed BPRI methods are close to the
best performing BIQA models on the NSI and CGI subsets,
but they perform the best on the SCI subset and the whole
database. The proposed BPRI methods demonstrate their supe-
riority on SCIs, which is consistent with the results described
in Section V-B. From an overall perspective, the BPRI methods
still perform the best on the CCT database. From Table IV, we
can observe that no BIQA model shows significant superiority
on non-common distortions of the LIVE, CSIQ, and SIQAD
databases. Most BIQA models show good performance on
distortions close to the common distortions, but they are not
good at distinctive distortions such as contrast change.

From Table II, Table III, and Table IV, we can observe

TABLE IV
SRCC PERFORMANCE ON NON-COMMON DISTORTIONS OF THE LIVE,

CSIQ, AND SIQAD DATABASES

Models LIVE CSIQ SIQAD #Hit
FF pWN CC MB CC LSC

DIIVINE - 0.1766 0.3958 0.4743 0.1300 0.0206 1
BLIINDS-II - 0.2011 0.0220 0.2512 0.0891 0.2077 0
BRISQUE - 0.2516 0.0288 0.4401 0.0024 0.2470 0
NFERM - 0.6262 0.3770 0.4238 0.2826 0.3008 1
CORNIA - - - 0.2165 0.1893 0.2242 0

HOSA - - - 0.2257 0.1530 0.2685 0
NIQE 0.8630 0.2973 0.2317 0.3514 0.0641 0.3483 1
QAC 0.8231 0.0019 0.2446 0.3755 0.0745 0.1866 0

IL-NIQE 0.8329 0.8738 0.4998 0.4480 0.0459 0.1567 1
LPSI 0.7808 0.2486 0.5386 0.3940 0.0676 0.5485 1

BPRI(c) 0.8207 0.3787 0.1076 0.0658 0.1720 0.7479 1
BPRI(p) 0.8181 0.3887 0.1563 0.0821 0.1656 0.7466 0

that BPRI works for various distortions though BPRI only
considers blockiness, sharpness and noisiness. It is because
that blockiness, blurring and noiseness are the most common
and dominant distortions in both IQA databases and practical
visual communication systems. Many other distortions are
close to or can be combinations of these distortions. The
mechanism of BPRI is similar to DIIVINE, which also uti-
lizes a 2-stage quality regression after distortion identification
framework.

D. Parameter Sensitivity

The proposed PRI-based metrics (PSS, LSSs, LSSn and
BPRI) involve very few parameters. Most parameters are
introduced when generating the PRI, where we need to control
the distortion level of the PRI. The key parameters include:
• The compression “Quality” parameter in PSS, which

specifies the compression degree when deriving the PRI.
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Fig. 7. The SRCC performance of BPRI w.r.t. variations of (a) the compression quality parameter, (b) the STD of the blurring kernel, (c) the variance of the
added noise on the LIVE, TID2013, CSIQ and SIQAD databases.

TABLE V
SRCC PERFORMANCE OF THE BPRI USING DIFFERENT FR METRICS TO

GUIDE THE SCORE ALIGNMENT

FR Metrics LIVE TID2013 CSIQ SIQAD Average
SSIM 0.8900 0.8145 0.8832 0.6998 0.8219

MS-SSIM 0.9120 0.8695 0.8972 0.7229 0.8504
VIF 0.9294 0.8855 0.8884 0.7784 0.8704

FSIM 0.9158 0.8789 0.9025 0.7543 0.8629
VSI 0.9076 0.8407 0.8934 0.6720 0.8284

MDSI 0.9210 0.8542 0.8885 0.6605 0.8311
PSIM 0.9295 0.8860 0.8964 0.7378 0.8624

GMSD 0.9304 0.8937 0.8999 0.7714 0.8739

• The blurring filter in LSSs, which specifies the blurring
degree when blurring the distorted image to the PRI.

• The variance v in LSSn, which specifies the intensity of
the added noise when deriving the PRI.

• The choice of FR metric in BPRI, which is used to guide
the score alignment.

We test the BPRI’s sensitivity to variations of these parameters
on the 4 common distortions (JPEG, GB, WN and JP2K)
of the LIVE, TID2013, CSIQ and SIQAD databases. When
testing one parameter, other parameters are fixed as the default
settings. Since the classifier and the score alignment are
related to all quality scores of the PRI-based distortion-specific
metrics, we re-train the classifier and re-fit the score alignment
model when testing the parameters. For the second parameter,
we replace the averaging filter with a 3×3 Gaussian filter with
standard deviation (STD) of σ, and test BPRI’s sensitivity to
σ. The averaging filter can be approximated by a Gaussian
filter with a large σ.

Fig. 7 illustrates the SRCC performance of BPRI(p) with
the variations of the first three parameters. It can be observed
that the performance remains stable within a significantly wide
range, which suggests high generalization capability of the
proposed BPRI method. Note that these three parameters have
controlled the distortion levels of the PRIs. It means that the
PRI does not need to be located at an exact point in the quality
axis as illustrated in Fig. 1. The PRI can be located at any
point within a certain range which represents worse quality
than the distorted image. Table V lists the SRCC performance

of the BPRI(p) using different FR metrics to guide the score
alignment. We have tested several representative FR metrics
including: SSIM [53], MS-SSIM [54], VIF [55], FSIM [56],
VSI [57], MDSI [58], PSIM [59] and GMSD [49]. It is
observed that the performance of using different FR metrics
are quite close, especially when using VIF, FSIM, PSIM and
GMSD.

E. Computational Complexity

To compare the computational complexity of state-of-the-art
BIQA models, we report the average running time (second-
s/image) for 100 images with a fixed resolution of 512× 512
on a computer with 4.00 GHz Intel Core i7-6700K CPU and
32 GB RAM. The running cost includes all feature extraction
and quality prediction time. From Table I, it appears that BPRI
is among the models with low computational complexity.

F. Analyses and Discussions

As described above, the proposed PRI-based BPRI method
achieves competitive performance compared with the state-of-
the-art. It is interesting to analyse how the PRI contributes
to the BIQA process. Fig. 8 illustrates example images of
different distortion types and levels, and the corresponding
PRIs. Three distortion levels and three distortion types (JPEG,
WN and GB) are illustrated here.

Taking JPEG compression as an example, we can observe
that no matter what the distorted images look like, the PRIs
look very similar, especially in the feature space (for example,
the pseudo structure space for JPEG images). That is the
reason why the “pseudo reference” can be used as a “ref-
erence”. The distorted image becomes more and more similar
to the PRI as the distortion becomes severer and severer.
Different from the traditional “reference” which describes
image contents with perfect quality, PRI describes the image
contents under the extremely poor quality condition, and the
PRI is independent of original distortion level to some extent.
One bottleneck of traditional BIQA models is that it is not easy
for them to distinguish artifacts and image contents, which are
sometimes similar. PRI-based methods have considered the
influence of image contents by comparing with the PRI.
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Fig. 8. Example images of different distortion types (from left to right: JPEG, WN, GB) and levels (three levels for each type), and the corresponding PRIs.
Top: distorted images; down: the corresponding PRIs.

Similarly, PRI plays the same role in the QA of noisy
images. PRI provides a description of the image content
under extremely noisy condition. The PRI is image content
dependent, but it is independent of original noise level to some
extent. The philosophy of PRI-based sharpness estimation is
slightly different from PRI-based blockiness and noisiness
estimation. We introduce certain amount of blurring (e.g.,
3× 3 averaging in our work), and estimate the image content
change. Blurring can change image content more significantly
in sharper images. The PRI acts as a reference to quantify the
content change.

The most critical engineering design is the deriving of the
PRI. Since each type of distortion causes specific artifacts, we
need to introduce the same type of artifacts to be consistent
when deriving the PRI. Thus the way of introducing artifacts is
determined, i.e., JPEG compression, adding noise, or blurring.
We only need to control the strength of the introduced artifacts
when deriving the PRI. We have introduced different levels
of artifacts in Section V-D. As analysed, the performance is
stable within a wide range, which indicates that the PRI does
not need to be located at an exact point in the quality axis
as illustrated in Fig. 1. The quality conditions of the PRI or
the strength of the introduced artifacts are adjustable, and they
will not influence the quality prediction significantly within a
certain range.

VI. CONCLUSION

Contrary to traditional IQA metrics which explicitly or
implicitly measure the distorted image’s deviation from perfect
quality images, we have utilized in this paper a new concept
of pseudo reference image (PRI), and a PRI-based BIQA
framework by measuring the distorted image’s distance to
the PRI. We confirm the effectiveness of PRI-based IQA,
and propose several PRI-based distortion-specific metrics to
estimate blockiness, sharpness and noisiness. The PRI-based
distortion-specific metrics are then integrated into a general-
purpose BIQA method named blind PRI-based (BPRI) metric.
The proposed BPRI method is opinion-unaware and almost
training-free except for the distortion identification process.
Compared with the state-of-the-art competitors, the proposed
model shows superior or at least comparable quality prediction
performance.

One advantage of the proposed metrics is that they per-
form quite well on both natural scene and screen content

images. It is an important and useful characteristic since the
computer-generated screen contents become more and more
widespread. Note that although we only predict image quality
via estimating blockiness, sharpness and noisiness in this
research, the presented PRI and PRI-based IQA framework
could be generalized to other image distortion types, and the
proposed BPRI method could also be further improved by
integrating more PRI-based distortion-specific estimators. For
other distortion types, we need to work out specific problems
of PRI definition and appropriate distance measures. We are
currently working on more extensions of the introduced PRI
scheme to the assessment of more distortion types.
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